Regeneration in the hemichordate Ptychodera flava.

نویسندگان

  • Tom Humphreys
  • Akane Sasaki
  • Gene Uenishi
  • Kekoa Taparra
  • Asuka Arimoto
  • Kuni Tagawa
چکیده

When the body of P. flava is severed, the animal has the ability to regenerate its missing anterior or posterior as appropriate. We have focused on anterior regeneration when the head and branchial regions are severed from the body of the worm. After transection, the body wall contracts and heals closed in 2 to 3 days. By the third day a small blastema is evident at the point of closure. The blastema grows rapidly and begins the process of differentiating into a head with a proboscis and collar. At 5 days the blastema has increased greatly in size and differentiated into a central bulb, the forming proboscis, and two lateral crescents, the forming collar. Between 5 and 7 days a mouth opens ventral to the differentiating blastema. Over the next few days the lateral crescents extend to encircle the proboscis and mouth, making a fully formed collar. By 10 to 12 days a new head, sized to fit the worm's body, has grown attached to the severed site. At about this time the animal regains apparently normal burrowing behavior. After the head is formed, a second blastema-like area appears between the new head and the old body and a new branchial region is inserted by regeneration from this blastema over the next 2 to 3 weeks. The regenerating tissues are unpigmented and whitish such that in-situ hybridization can be used to study the expression of genes during the formation of new tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Head regeneration in hemichordates is not a strict recapitulation of development

BACKGROUND Head or anterior body part regeneration is commonly associated with protostome, but not deuterostome invertebrates. However, it has been shown that the solitary hemichordate Ptychodera flava possesses the remarkable capacity to regenerate their entire nervous system, including their dorsal neural tube and their anterior head-like structure, or proboscis. Hemichordates, also known as ...

متن کامل

A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava.

This work concerns the formation of mesoderm in the development of an enteropneust hemichordate, Ptychodera flava, and the expression of the Brachyury gene during this process. Brachyury expression occurs in two distinct phases. In the embryo, Brachyury is transcribed during gastrulation in the future oral and anal regions of the gut, but transcripts are no longer detected by 2 weeks of develop...

متن کامل

Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava

Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling ...

متن کامل

Identical Genomic Organization of Two Hemichordate Hox Clusters

Genomic comparisons of chordates, hemichordates, and echinoderms can inform hypotheses for the evolution of these strikingly different phyla from the last common deuterostome ancestor. Because hox genes play pivotal developmental roles in bilaterian animals, we analyzed the Hox complexes of two hemichordate genomes. We find that Saccoglossus kowalevskii and Ptychodera flava both possess 12-gene...

متن کامل

Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates.

Here, we report the discovery and characterization of biominerals in the acorn worms Saccoglossus bromophenolosus and Ptychodera flava galapagos (Phylum: Hemichordata). Using electron microscopy, X-ray microprobe analyses and confocal Raman spectroscopy, we show that hemichordate biominerals are small CaCO(3) aragonitic elements restricted to specialized epidermal structures, and in S. bromophe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zoological science

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2010